Noticias


Chipnation 2024 IMSE
CHIPNATION 2024: IMSE explora las oportunidades y desafíos de la tecnología neuromórfica

El catedrático de Investigación del IMSE, Bernabé Linares-Barranco, participó como panelista en CHIPNATION 2024, el congreso sobre microelectrónica organizado por la Asociación Española de la Industria de Semiconductores – AESEMI, los días 2 y 3 de diciembre de 2024 en Valencia.
12 Diciembre 2024

LEER MÁS

Aplicacion Buscanidos IMSE
Buscanidos: juega y contribuye a la conservación del Chorlitejo Patinegro

Desde el mes de octubre, el Museo Casa de la Ciencia de Sevilla acoge la innovadora aplicación interactiva Buscanidos, desarrollada por el investigador del Instituto de Microelectrónica de Sevilla (IMSE-CNM) Gustavo Liñán-Cembrano.
4 Diciembre 2024

LEER MÁS

Taller MathWorks 2024
MathWorks impulsa el modelado y el diseño avanzado en el IMSE

Técnicos de MathWorks, corporación estadounidense especializada en software de informática matemática, han visitado el IMSE para ofrecer talleres teórico-prácticos sobre MATLAB.
2 Diciembre 2024

LEER MÁS

Science Wonderful 2024
El IMSE estará por segundo año consecutivo en la feria de la ciencia de la Comisión Europea

"Science is Wonderful!", la feria internacional de la ciencia organizada por la Comisión Europea, se celebrará en Bruselas los próximos 12, 13 y 14 de marzo de 2025, y volverá a contar por segundo año consecutivo con la participación de un equipo de investigadores del Instituto de Microelectrónica de Sevilla (IMSE-CNM).
12 Noviembre 2024

LEER MÁS

IMEC visita el IMSE
IMEC visita el IMSE para explorar oportunidades de colaboración tras su llegada a España

La visita consistió en una primera ronda de presentación de las distintas entidades y un posterior recorrido por los laboratorios del centro.
28 Octubre 2024

LEER MÁS

El futuro de las PUFs
Resistentes a los cambios de temperatura: así será el futuro de las PUFs

Desde el Instituto de Microelectrónica de Sevilla (IMSE-CNM) nos complace anunciar la reciente publicación de la mano de la revista IEEE Transactions on Circuits and Systems I: Regular Papers del artículo titulado "A Comprehensive Approach to Improving the Thermal Reliability of RTN-Based PUFs" al que han contribuido investigadores de nuestro centro.
8 Octubre 2024

LEER MÁS

EVENTOS Y NOTICIAS ANTERIORES

Nueva Directora del IMSE-CNM


La investigadora del IMSE Teresa Serrano Gotarredona ha sido nombrada nueva Directora del Instituto de Microelectrónica de Sevilla.

LEER MÁS

Formación en el IMSE


- Doctorado
- Máster
- Grados
- Trabajos Fin de Grado
- Prácticas en Empresa

LEER MÁS

Publicaciones recientes


Design of a Karatsuba Multiplier to Accelerate Digital Signature Schemes on Embedded Systems
P. Navarro-Torrero, E. Camacho-Ruiz, M.C. Martínez-Rodríguez and P. Brox
Conference · IEEE Nordic Circuits and Systems Conference (NorCAS), 2024
resumen      doi      

This paper presents the design and implementation of a Karatsuba multiplier to accelerate digital signature schemes on embedded systems. The Karatsuba algorithm is integrated into hardware accelerators for RSA and EdDSA, representing a fundamental component of contemporary, state-of-the-art implementations. A hardware/software co-design methodology is employed, implementing the architectures on a System-onChip platform that combines programmable logic with an ARM processor. The results showcase enhanced resource consumption and timing performance for both signature generation and verification, confirming the superiority of EdDSA over RSA when utilizing the same Karatsuba multiplier core and coding techniques.

VLSI integration of a RO-based PUF into a 65 nm technology
P. Ortega-Castro, L.F. Rojas-Muñoz, J.M. Mora-Gutiérrez, P. Brox and M.C. Martínez-Rodríguez
Conference · IEEE Nordic Circuits and Systems Conference (NorCAS), 2024
resumen      doi      

Ring Oscillator Physical Unclonable Functions (ROPUFs) take advantage of process variability during the manufacturing process to exploit the small differences in the RO oscillating frequencies and generate unique identifiers (ID). Its structure makes it suitable for, both, FPGA and ASIC applications. This paper presents a RO-PUF implementation using a semi-custom design methodology in TSMC 65 nm technology which has been validated through the entire design process, manufactured and experimentally characterized. Results show a good performance and robustness against temperature and voltage variations while obtaining up to three bits from each execution to generate digital IDs.

A Comprehensive Approach to Improving the Thermal Reliability of RTN-Based PUFs
F. de los Santos-Prieto, F.J. Rubio-Barbero, R. Castro-López, E. Roca and F.V. Fernández
Journal Paper · IEEE Transactions on Circuits and Systems I: Regular Papers (Early Access), 2024
IEEE    ISSN: 1549-8328
resumen      doi      

Silicon Physical Unclonable Functions (PUFs) have emerged as a promising solution for generating cryptographic keys in low-cost resource-constrained devices. A PUF is expected to be reliable, meaning that its response bits should remain consistent each time the corresponding challenges are queried. Unfortunately, the stability of these challenge-response pairs (CRPs) can be seriously eroded by environmental factors like temperature variations and the aging of the integrated circuits implementing the PUF. Several approaches, including bit masking, bit selection techniques, and error-correcting codes, have been proposed to obtain a reliable PUF operation in the face of temperature variations. As for aging, a new kind of aging-resilient silicon PUF has been reported that uses the time-varying phenomenon known as Random Telegraph Noise (RTN) as the underlying entropy source. Although this type of PUF preserves its reliability well when aged, it is not immune to the impact of temperature variations. The work presented here shows that it is possible to improve the thermal reliability of RTN-based PUFs with a proper combination of (a) a novel optimization-based bit selection technique, that is also applicable to other types of PUFs based on differential measurements; and (b) a temperature-aware tuning of the entropy-harvesting function.

A Review of Ising Machines Implemented in Conventional and Emerging Technologies
T. Zhang, Q. Tao, B. Liu, A. Grimaldi, E. Raimondo, M. Jiménez, M.J. Avedillo, J. Núñez, B. Linares-Barranco, T. Serrano-Gotarredona, G. Finocchio and Jie Han
Journal Paper · IEEE Transactions on Nanotechnology (Early Access), 2024
IEEE    ISSN: 1536-125X
resumen      doi      

Ising machines have received growing interest as efficient and hardware-friendly solvers for combinatorial optimization problems (COPs). They search for the absolute or approximate ground states of the Ising model with a proper annealing process. In contrast to Ising machines built with superconductive or optical circuits, complementary metal-oxide-semiconductor (CMOS) Ising machines offer inexpensive fabrication, high scalability, and easy integration with mainstream semiconductor chips. As low-energy and CMOS-compatible emerging technologies, spintronics and pase-transition devices offer functionalities that can enhance the scalability and sampling performance of Ising machines. In this article, we survey various approaches in the process flow for solving COPs using CMOS, hybrid CMOSspintronic, and phase-transition devices. First, the methods for formulating COPs as Ising problems and embedding Ising formulations to the topology of the Ising machine are reviewed. Then, Ising machines are classified by their underlying operational principles and reviewed from a perspective of hardware implementation. CMOS solutions are advantageous with denser connectivity, whereas hybrid CMOS-spintronic and phase-transition device-based solutions show great potential in energy efficiency and high performance. Finally, the challenges and prospects are discussed for the Ising formulation, embedding process, and implementation of Ising machines.

TODAS LAS PUBLICACIONES

Video institucional del IMSE


Qué hacemos en el IMSE


El área de especialización del Instituto es el diseño de circuitos integrados analógicos y de señal mixta en tecnología CMOS, así como su uso en diferentes contextos de aplicación tales como dispositivos biomédicos, comunicaciones inalámbricas, conversión de datos, sensores de visión inteligentes, ciberseguridad, computación neuromórfica y tecnología espacial.

La plantilla del IMSE-CNM está formada por unas cien personas, entre personal científico y de apoyo, que participan en el avance del conocimiento, la generación de diseños de alto nivel científico-técnico y la transferencia de tecnología.

LEER MÁS

Webs relacionadas con el IMSE


COMPARTIR