Found results matching for:
Author: Apurba Karmakar
Year: Since 2002
Journal Papers
No results
Conferences
Security assessment methodology for RISC-V cores
A. Karmakar, P. Navarro-Tornero, E. Camacho-Ruiz, M.C. Martinez-Rodriguez and P. Brox
Conference · RISC-V Summit Europe 2025, Mayo 12-15, 2025
abstract
Abstract not available
Open Source API for a Hardware Root-of-Trust
E. Camacho-Ruiz, L.F. Rojas-Muñoz, A. Karmakar, P. Navarro-Torrero, P. Brox and M.C. Martínez-Rodríguez
Conference · XVIII Reunión Española de Criptología y Seguridad de la Información, 23-25 octubre 2024, León (España)
abstract
This paper presents an API designed for a hardware-based Root of Trust that provides a suite of essential cryptographic and security functions based on hardware cryptographic IP cores. The high-level abstraction of the API enables software developers to create secure applications within secure computing systems by leveraging the benefits of hardware IP cores. The hardware IP cores that support the API are compliant with international standards, ensuring robust security and reliability. The API development adheres to the open-source science policies and is published online under a public license. Additionally, the portability of the API across multiple platforms ensures wide compatibility and accessibility, enabling seamless integration and reproducibility.
Cryptographic Security Through a Hardware Root of Trust
L.F. Rojas-Muñoz, S. Sánchez-Solano, M.C. Martínez-Rodríguez, E. Camacho-Ruiz, P. Navarro-Torrero, A. Karmakar, C. Fernández-García, E. Tena-Sánchez, F.E. Potestad-Ordóñez, A. Casado-Galán, P. Ortega-Castro, A.J. Acosta-Jiménez, C.J. Jiménez-Fernández and P. Brox
Conference · Applied Reconfigurable Computing. Architectures, Tools, and Applications (ARC), 2024
abstract
doi
This work presents a novel approach to a Hardware Root-of-Trust that leverages System-on-Chip technology for the implementation of hardware cryptographic functions. Taking advantage of the processing power of a System-on-Chip, the solution established promotes hardware-based security solutions over software-only solutions. The proposed Root-of-Trust, developed around a Xilinx Zynq-7000 SoC device, integrates components based on cryptographic algorithms and physical phenomena. This innovative Root-of-Trust is tailored to support a spectrum of security tasks within cryptographic systems, including device-specific identifiers and keys, encryption and decryption, hashing, and signature generation and verification. The study adopts a unified design methodology, capitalizing on collaborative efforts to efficiently develop hardware primitives that significantly contribute to enhancing security in computing environments. Aligned with the advantages of reconfigurable hardware, this Hardware Root-of-Trust addresses the critical need for robust hardware-level security and introduces a set of countermeasures to fortify the design against potential threats.
HW/SW implementation of RSA digital signature on a RISC-V-based System-on-Chip
A. Karmakar, S. Sánchez-Solano, M.C. Martínez-Rodríguez and P. Brox
Conference · XXXVIII Conference on Design of Circuits and Integrated Systems DCIS 2023
abstract
Abstract not available
Books
No results
Book Chapters
No results
Other publications
No results